Mean Convergence of Interpolation Polynomials in a Domain with Corners

Lefan Zhong
Department of Mathematics, Peking University
Communicated by T. J. Rivlin

Received February 6, 1992; accepted in revised form December 4, 1992

DEDICATED TO THE MEMORY OF PROFESSOR X. C. SHEN

Abstract

In this paper, we prove mean convergence of interpolation polynomials in a domain with some corners. 1994 Academic Press, Inc.

1. Introduction

Let $D \subset \mathbb{C}$ be a domain bounded by a Jordan curve Γ, and let U be the unit disk. $z=\Psi(w)$ denotes the one-to-one conformal mapping of $\mathbb{C} \backslash \bar{U}$ onto $\mathbb{C} \backslash \bar{D}$, normalized by the condition $\Psi(\infty)=\infty, \Psi^{\prime}(\infty)>0$. We denote the inverse mapping of Ψ by Φ.

Let

$$
A(\bar{D})=\{f: f \text { analytic in } D \text { and continuous on } \bar{D}\} .
$$

In the case Γ is rectifiable, let

$$
\begin{equation*}
\|f\|_{p}=\left\{\int_{\Gamma}|f(z)|^{p}|d z|\right\}^{1 / p} . \tag{1.1}
\end{equation*}
$$

For S_{n} consisting of n distinct points on $\Gamma, L_{n}(f, z)$ denote the Lagrange interpolation polynomials to $f \in A(\bar{D})$ on S_{n}. Generally, we cannot expect to find a sequence $\left\{S_{n}\right\}$ such that $L_{n}(f, z)$ is convergent uniformly on \bar{D} for any $f \in A(\bar{D})$. Then it is reasonable to consider mean convergence of $\left\{L_{n}(f, z)\right\}$ on Γ. When $D=U$ and

$$
S_{n}=\left\{e^{(2 k \pi / n) i}, k=1,2, \ldots, n\right\}
$$

it is well known [1] that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|f(z)-L_{n}(f, z)\right\|_{p}=0 \tag{1.2}
\end{equation*}
$$

for $0<p<\infty, f \in A(\bar{D})$.

In the general case, S_{n} usually consists of the Fejér points on Γ, which means

$$
S_{n}=\left\{\Psi\left(e^{(2 k \pi / n) i}\right), k=1,2, \ldots, n\right\}
$$

Curtiss [2] showed (1.2) when $p=2$ and Γ is an analytic curve. Al'per and Kalinogorskaya [3] proved (1.2) when Γ is $2+\delta$ smooth. Recently, Shen and Zhong [4] got the same result when Γ is $1+\delta$ smooth. However, no corners are allowed in these papers. In [7], Thompson stated theorems for uniform convergence on closed subsets of D that cover cases when Γ possesses some corners with exterior angles not less than π. As we know, uniform convergence on closed subsets of D is much weaker than mean convergence on Γ, and the restriction on exterior angles would lose some generalities. We refer the reader to $[5,6]$ for surveys for the problem and its history.

In this paper, we prove (1.2) in the case when Γ possesses some corners. We call D admissible, if there exist $\left\{r_{j}, j=1, \ldots, K\right\} \subset \partial U$, $\left\{\alpha_{j}, j=1, \ldots, K\right\} \subset(0,2), c_{1}>0, c_{2}>0$, and $\beta>0$, such that

$$
|\lambda(u)| \geqslant c_{1}, \quad|u| \geqslant 1
$$

and

$$
\left|\lambda\left(u_{1}\right)-\lambda\left(u_{2}\right)\right| \leqslant c_{2}\left|u_{1}-u_{2}\right|^{\beta}, \quad\left|u_{1}\right|, \mid u_{2} \geqslant 1
$$

where

$$
\begin{equation*}
\hat{\lambda}(u)=\Psi^{\prime}(u) \prod_{j=1}^{k}\left(u^{-1}-\tau_{j}^{-1}\right)^{1-x_{j}} \tag{1.3}
\end{equation*}
$$

Clearly, if D is admissible, Γ posseses a continuously turning tangent except at the points $\Psi\left(\tau_{j}\right), j=1, \ldots, K$, at which Γ has half tangents with exterior angles $\pi \alpha_{j}$. Conversely, if Γ consists of a finite number of arcs with continuous curvature and the exterior angles not being $0,2 \pi$, then D is admissible.

The main result in this paper is the following.
Theorem. Suppose that $0<p<\infty$ and D is admissible and that S_{n} consists of the Fejér points. Then for any $f \in(A \bar{D})$,

$$
\lim _{n \rightarrow \infty}\left\|f(z)-L_{n}(f, z)\right\|_{p}=0
$$

As in [5], the main idea of proof is using the theory of singular integral. First, we show that the Fejér points are uniformly separated inside a level curve. Second, we find a function h to interpolate f, which may not be a
polynomial but in analytic inside the level curve. Third, $L_{n}(f, z)$ is taken as the weighted singular integral of h. Finally, we show that the interpolation polynomial operators $L_{n}: A(\bar{D}) \rightarrow L^{p}$ are bounded uniformly by the theory of singular integral and the estimation of the weight.

In the following the domain D is always assumed admissible, and c_{j} denote positive constant only depending on D and p.

2. Preliminary Facts

For $1 \leqslant|u|,|w| \leqslant 2$, we have [8, p. 387]

$$
\begin{equation*}
c_{3}^{-1} \leqslant \frac{|\Psi(u)-\Psi(w)|}{|u-w|\left(\left|u-\tau_{k}\right|+|u-w|\right)^{\alpha_{k}-1}} \leqslant c_{3}, \tag{2.1}
\end{equation*}
$$

where τ_{k} is the closest point to u among $\left\{\tau_{j}, j=1, \ldots, K\right\}$.
For $z \in \mathbb{C}, E \subset \mathbb{C}$, let

$$
d(z, E)=\inf _{\zeta \in E}|z-\zeta| ;
$$

then for $\rho>1$, we have

$$
\begin{equation*}
\left|\Psi\left(e^{i t}\right)-\Psi\left(\rho e^{i t}\right)\right| \leqslant c_{4} d\left(\Psi\left(e^{i t}\right), \gamma_{\rho}\right) \tag{2.2}
\end{equation*}
$$

where

$$
\gamma_{\rho}=\{\zeta:|\Phi(\zeta)|=\rho\} .
$$

Let

$$
\begin{equation*}
z_{n, k}=\Psi\left(e^{(2 k \pi / n) i}\right), \quad k=1,2, \ldots, n \tag{2.3}
\end{equation*}
$$

be nth Fejér points. We take $z_{n, n+1}=z_{n, 1}$. By (2.1) and (2.2), we can find c_{0}, such that for $\Gamma_{n}=\gamma_{1+c_{0} / n}$,

$$
\begin{equation*}
d\left(z_{n, k}, \Gamma_{n}\right) \leqslant \min _{j \neq k}\left|z_{n, j}-z_{n, k}\right|, \quad k=1,2, \ldots, n \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|z_{n, k+1}-z_{n, k}\right| \leqslant c_{5} d\left(z_{n, k}, \Gamma_{n}\right), \quad k=1,2, \ldots, n \tag{2.5}
\end{equation*}
$$

hold.
Let D_{n} be the interior of Γ_{n}. For $F \in L^{p}\left(\Gamma_{n}\right)$, we denote

$$
\|F\|_{p, n}=\left\{\int_{\Gamma_{n}}|F(z)|^{p}|d z|\right\}^{1 / p}
$$

When $1<p<\infty$, we define

$$
\mathbb{P} F(z)=\frac{1}{2 \pi i} \int_{\Gamma_{n}} \frac{F(\zeta)}{\zeta-z} d \zeta, \quad z \in D_{n}
$$

then $\mathbb{P} F \in E^{p}\left(D_{n}\right)$, and [9]

$$
\begin{equation*}
\|P F\|_{p} \leqslant c_{6}\|F\|_{p, n} \tag{2.6}
\end{equation*}
$$

For $z \in \mathbb{C}, r>0$, let

$$
U(z, r)=\{\zeta:|\zeta-z|<r\}
$$

and let

$$
S(z, r)=\int_{\zeta \in I \cap U(z, r)}|d \zeta| .
$$

Since Γ is piecewise smooth, we have

$$
\begin{equation*}
S(z, r) \leqslant c_{7} r . \tag{2.7}
\end{equation*}
$$

Since D is a Lipschitz domain, for any $z_{1}, z_{2} \in \Gamma$, there exists an arc $\overparen{z_{1} z_{2}} \subset \Gamma$ connecting z_{1} and z_{2}, such that

$$
\begin{equation*}
\left|\widehat{z_{1} z_{2}}\right|=\int_{\widehat{z_{1} z_{2}}}|d z| \leqslant c_{8}\left|z_{1}-z_{2}\right| \tag{2.8}
\end{equation*}
$$

3. Uniform Separated

Points $\left\{w_{j}\right\}$ in U are called η_{1}-uniformly separated, if

$$
\inf _{k} \prod_{j \neq k} \frac{\left|w_{j}-w_{k}\right|}{\left|1-\bar{w}_{k} w_{j}\right|} \geqslant \eta_{1}>0
$$

and we call $\left\{w_{j}\right\} \quad \eta_{2}$-weakly separated, if

$$
\inf _{j \neq k}\left|\frac{w_{j}-w_{k}}{1-\bar{w}_{k} w_{j}}\right| \geqslant \eta_{2}>0, \quad \text { for all } k
$$

Let z_{0} be a fixed point in D, and let $\phi_{n}: D_{n} \rightarrow U$ be the conformal mapping satisfying $\phi_{n}\left(z_{0}\right)=0$ and $\phi_{n}^{\prime}\left(z_{0}\right)>0$. We denote the inverse mapping of ϕ_{n} by ψ_{n}.

Lemma 1. For any $n>0, \quad\left\{\phi_{n}\left(z_{n, k}\right), k=1,2, \ldots, n\right\}$ are $\frac{1}{16}$-weakly separated.

Proof. Let $\phi_{n, k}: D_{n} \rightarrow U$ be the conformal mapping satisfying $\phi_{n, k}\left(z_{n, k}\right)=0$ and $\phi_{n, k}^{\prime}\left(z_{n, k}\right)>0$. Then [9, p.96]

$$
\phi_{n, k}^{\prime}\left(z_{n, k}\right) d\left(z_{n, k}, \Gamma_{n}\right) \geqslant \frac{1}{4}
$$

It is very easy to verify that [11]

$$
\phi^{*}(w)=\frac{\phi_{n, k}\left(d\left(z_{n, k}, \Gamma_{n}\right) w+z_{k, n}\right)}{\phi_{n, k}^{\prime}\left(z_{n, k}\right) d\left(z_{n, k}, \Gamma_{n}\right)} \in S
$$

By the Koebe's $\frac{1}{4}$-theorem, we know that $\left\{\phi_{n, k}(z):\left|z-z_{k, n}\right|<d\left(z_{n, k}, \Gamma_{n}\right)\right\}$ covers $\left\{w:|w|<\frac{1}{4} \phi_{n, k}^{\prime}\left(z_{n, k}\right) d\left(z_{n, k}, \Gamma_{n}\right)\right\}$.

By (2.4), for $j \neq k$,

$$
\begin{aligned}
\left|\frac{\phi_{n}\left(z_{n, j}\right)-\phi_{n}\left(z_{n, k}\right)}{1-\overline{\phi_{n}\left(z_{n, k}\right)} \phi_{n}\left(z_{n, j}\right)}\right| & =\left|\phi_{n, k}\left(z_{n, j}\right)\right| \\
& \geqslant \frac{1}{4} \phi_{n, k}^{\prime}\left(z_{n, k}\right) d\left(z_{n, k}, \Gamma_{n}\right) \\
& \geqslant \frac{1}{16} .
\end{aligned}
$$

A positive meausre μ on D_{n} is called η_{3}-Carleson measure, if for any $z \in \Gamma_{n}, r>0$, we have

$$
\mu(U(z, r)) \leqslant \eta_{3} r .
$$

Let δ_{z} be the unit mass concentrated at z.
Lemma 2. For any $n>0$, let

$$
v_{n}=\sum_{k=1}^{n}\left|z_{n, k+1}-z_{n, k}\right| \delta_{z_{n, k}} .
$$

Then v_{n} is a c_{9}-Carleson measure on D_{n}.
Proof. In fact, we only prove the lemma when n is sufficiently large. For any $\zeta \in \Gamma_{n}, r>0$, there exists $\zeta^{*} \in \mathbb{C} \backslash D_{n}$ such that

$$
\left|\zeta^{*}-\zeta\right|=r
$$

and

$$
\begin{equation*}
d\left(\zeta^{*}, \Gamma_{n}\right) \geqslant c_{10} r . \tag{3.1}
\end{equation*}
$$

For $z \in U(\zeta, r)$, we have

$$
\frac{1}{r^{2}} \leqslant \frac{4}{\left|z-\zeta^{*}\right|^{2}} .
$$

Then

$$
\begin{align*}
v_{n}(U(\zeta, r)) & =\sum_{z_{n, k} \in U(\zeta, r)}\left|z_{n, k+1}-z_{n, k}\right| \\
& \leqslant 4 r^{2} \sum_{k=1}^{n} \frac{\left|z_{n, k+1}-z_{n, k}\right|}{\left|z_{n, k-\zeta, k}\right|^{2}} \tag{3.2}
\end{align*}
$$

For any $z \in{\widehat{z_{n, k} z_{n, k+1}}}$, by (2.8) we have

$$
\begin{aligned}
\left|z-z_{n, k}\right| & \leqslant\left|\widehat{z z}_{n, k}\right| \\
& \leqslant\left|\widehat{z}_{n, k} z_{n, k+1}\right| \\
& \leqslant c_{8}\left|z_{n, k+1}-z_{n, k}\right| .
\end{aligned}
$$

Then

$$
\begin{aligned}
\left|z-\zeta^{*}\right| & \leqslant\left|z-z_{n, k}\right|+\left|z_{n, k}-\zeta^{*}\right| \\
& \leqslant c_{8}\left|z_{n, k+1}-z_{n, k}\right|+\left|z_{n, k}-\zeta^{*}\right| \\
& \leqslant c_{8} d\left(z_{n, k}, \Gamma_{n}\right)+\left|z_{n, k}-\zeta^{*}\right| \\
& \leqslant\left(1+c_{8}\right)\left|z_{n, k}-\zeta^{*}\right| .
\end{aligned}
$$

That means

$$
\frac{1}{\left|z_{n, k}-\zeta^{*}\right|} \leqslant \frac{\left(1+c_{8}\right)}{\left|z-\zeta^{*}\right|}, \quad z \in \widehat{z_{n, k} z_{n, k+1}} .
$$

Hence

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{\left|z_{n, k+1}-z_{n, k}\right|}{\left|z_{n, k}-\zeta^{*}\right|^{2}} & \leqslant\left(1+c_{8}\right)^{2} \sum_{k=1}^{n} \int_{z_{n, k} z_{n, k+1}} \frac{|d z|}{\left|z-\zeta^{*}\right|^{2}} \\
& =\left(1+c_{8}\right)^{2} \int_{\Gamma} \frac{|d z|}{\left|z-\zeta^{*}\right|^{2}} \\
& =\left(1+c_{8}\right)^{2} \int_{d\left(\zeta^{*}, \Gamma\right)}^{+\infty} \frac{d S\left(\zeta^{*}, t\right)}{t^{2}} \\
& \leqslant c_{11} \frac{1}{d\left(\zeta^{*}, \Gamma\right)}
\end{aligned}
$$

The last inequality is because of (2.7). By (3.1) and (3.2) we have

$$
v_{n}(U(\zeta, r)) \leqslant c_{12} r .
$$

Lemma 3. For any $n>0,\left\{\phi_{n}\left(z_{n, k}\right), k=1,2, \ldots, n\right\}$ are c_{13}-uniformly separated.

Proof. Since we have shown that $\left\{\phi_{n}\left(z_{n, k}\right), k=1,2, \ldots, n\right\}$ are $\frac{1}{16}$-weakly separated, we only need prove that

$$
\mu_{n}=\sum_{k=1}^{n}\left(1-\left|\phi_{n}\left(z_{n, k}\right)\right|^{2}\right) \delta_{\phi_{n}\left(z_{n, k}\right)}
$$

is a c_{14}-Carleson measure on $U[10$, p. 287].
Since v_{n} is a c_{10}-Carleson measure on D_{n}, then for any $h \in E^{1}\left(D_{n}\right)$, we have [9]

$$
\begin{aligned}
\sum_{k=1}^{n}\left|h\left(z_{n, k}\right)\right|\left|z_{n, k+1}-z_{n, k}\right| & =\iint_{D_{n}}|h| d v_{n} \\
& \leqslant c_{15}\|h\|_{1, n}
\end{aligned}
$$

Let

$$
\begin{equation*}
g(w)=\psi_{n}^{\prime}(w) h \circ \psi_{n}(w), \quad w \in U \tag{3.3}
\end{equation*}
$$

then $g \in H^{1}$, and

$$
\sum_{k=1}^{n}\left|g \circ \phi_{n}\left(z_{n, k}\right)\right|\left|\phi_{n}^{\prime}\left(z_{n, k}\right)\right|\left|z_{n, k+1}-z_{n, k}\right| \leqslant c_{15}\|g\|_{1}
$$

By the Koebe distortion theorem [9, p. 96] and (2.5)

$$
\begin{align*}
1-\left|\phi_{n}\left(z_{n, k}\right)\right|^{2} & \leqslant 8\left|\phi_{n}^{\prime}\left(z_{n, k}\right)\right| d\left(z_{n, k}, \Gamma_{n}\right) \\
& \leqslant 8\left|\phi_{n}^{\prime}\left(z_{n, k}\right)\right|\left|z_{n, k+1}-z_{n, k}\right| . \tag{3.4}
\end{align*}
$$

Then

$$
\iint_{U}|g| d \mu_{n} \leqslant 8 c_{15}\|g\|_{1} .
$$

Since very function in H^{1} can be written in the form of (3.3), the above inequality holds for any $g \in H^{1}$, which is equivalent to that μ_{n} is a c_{14}-Carleson measure on U.

Lemma 4. Suppose $0<p<\infty,\left\{a_{k}, k=1, \ldots, n\right\}$ are complex numbers. There exists $h \in E^{p}\left(D_{n}\right)$ such that

$$
\begin{equation*}
h\left(z_{n, k}\right)=a_{k}, \quad k=1,2, \ldots, n \tag{3.5}
\end{equation*}
$$

and

$$
\|h\|_{p, n} \leqslant c_{16}\left\{\sum_{k=1}^{n}\left|a_{k}\right|^{p}\left|z_{n, k+1}-z_{n, k}\right|\right\}^{1 / p}
$$

Proof. Let

$$
b_{k}=a_{k}\left[\phi_{n}^{\prime}\left(z_{n, k}\right)\right]^{-1 / p}, \quad k=1,2, \ldots, n
$$

From Lemma 3 we can find a $g \in H^{p}$ such that [10]

$$
\left(g \circ \phi_{n}\right)\left(z_{n, k}\right)=b_{k}, \quad k=1,2, \ldots, n,
$$

and

$$
\|g\|_{p} \leqslant c_{16}\left\{\sum_{k=1}^{n}\left|b_{k}\right|^{p}\left(1-\left|\phi_{n}\left(z_{n, k}\right)\right|^{2}\right)\right\}^{1 / p}
$$

Let

$$
h(z)=\left[\phi_{n}^{\prime}(z)\right]^{1 / p}\left(g \circ \phi_{n}\right)(z) \in E^{p}\left(D_{n}\right)
$$

Then we have (3.5). By (3.4) we have

$$
\|h\|_{p, n}=\|g\|_{p} \leqslant 8^{1 / p} c_{16}\left\{\sum_{k=1}^{n}\left|a_{k}\right|^{p}\left|z_{n, k+1}-z_{n, k}\right|\right\}^{1 / p}
$$

4. An Estimation of $\left|\omega_{n}(z)\right|$ on Γ_{n}

Let

$$
\omega_{n}(z)=\prod_{k=1}^{n}\left(z-z_{n, k}\right) .
$$

Lemma 5. For any $z \in \Gamma_{n}$

$$
\begin{equation*}
c_{17}^{-1} \leqslant\left|\frac{\omega_{n}(z)}{d^{n}}\right| \leqslant c_{17} \tag{4.1}
\end{equation*}
$$

where $d=\Psi^{\prime}(\infty)$.

Proof. As in [4], the function

$$
\chi(w, u)=\left\{\begin{array}{cl}
\frac{\Psi(w)-\Psi(u)}{d(w-u)}, & u \neq w \\
\frac{\Psi^{\prime}(w)}{d}, & u=w
\end{array}\right.
$$

is clearly an analytic function of u for fixed $w,|u|>1,|w|>1$, and $\chi(w, \infty)=1$. The univalence of $\Psi(w)$ implies that $\chi(w, u)$ cannot vanish for $|u|>1,|w|>1$.
Let $\log \chi(w, u)$ denote the branch of logarithm for which $\log \chi(w, \infty)=0$; then we have the Laurent series

$$
\log \chi(w, u)=\sum_{j=1}^{\infty} \frac{a_{j}(w)}{u^{j}} .
$$

For $z=\Psi(w) \in \Gamma_{n}$, we have

$$
\begin{equation*}
\log \frac{\omega_{n}(z)}{d^{n}\left(w^{n}-1\right)}=n \sum_{l=1}^{+\infty} a_{n t}(w) . \tag{4.2}
\end{equation*}
$$

For $|w|=1+c_{0} / n, k \geqslant n$, we now estimate $\left|a_{k}(w)\right|$. Evidently

$$
\begin{align*}
a_{k}(w)= & \frac{1}{2 k(k+1) \pi i} \int_{|u|=1+c_{0} / 2 k} u^{k+1} \frac{\partial^{2} \log \chi(w, u)}{\partial u^{2}} d u \\
= & \frac{1}{2 k(k+1) \pi i} \int \frac{u^{k+1} d u}{(u-w)^{2}}-\frac{1}{2 k(k+1) \pi i} \int \frac{u^{k+1}\left[\Psi^{\prime}(u)\right]^{2}}{[\Psi(u)-\Psi(w)]^{2}} d u \\
& +\frac{1}{2 k(k+1) \pi i} \int \frac{u^{k+1} \Psi^{\prime \prime}(u)}{\Psi(u)-\Psi(w)} d u \\
= & B_{1}(w)+B_{2}(w)+B_{3}(w) . \tag{4.3}
\end{align*}
$$

For the sake of simplicity we omit the path of integration $|u|=1+c_{0} / 2 k$ in the following part of this section. There is no essential effect and notations and computation are much easier if we assume that there is only one corner on $\Gamma, \tau_{1}=1$ and $\alpha_{1}=\alpha$.
Since $|u|<|w|$, we have

$$
\begin{equation*}
B_{1}(w)=0 . \tag{4.4}
\end{equation*}
$$

By (1.3) we have

$$
\begin{aligned}
\left|B_{2}(w)\right| & \leqslant \frac{\left(1+c_{0} / 2 k\right)^{k+1}}{2 k(k+1) \pi} \int \frac{|\lambda(u)||u-1|^{2 x-2}}{|\Psi(u)-\Psi(w)|^{2}}|d u| \\
& \leqslant \frac{c_{19}}{k^{2}} \int \frac{|u-1|^{2 \alpha-2}|d u|}{|u-w|^{2}(|u-1|+|u-w|)^{2 x-2}}
\end{aligned}
$$

If $\alpha \geqslant 1$, clearly we have

$$
\left|B_{2}(w)\right| \leqslant \frac{c_{19}}{k^{2}} \int \frac{|d u|}{|u-w|^{2}} \leqslant \frac{c_{20} n}{k^{2}} .
$$

In the case when $0<\alpha<1$, we have

$$
\begin{aligned}
\left|B_{2}(w)\right| & \leqslant \frac{2 c_{19}}{k^{2}} \int \frac{|u-1|^{2-2 \alpha}+|u-w|^{2--2 \alpha}}{|u-w|^{2}|u-1|^{2-2 \alpha}}|d u| \\
& \leqslant \frac{2 c_{19}}{k^{2}} \int \frac{|d u|}{|u-w|^{2}}+\frac{2 c_{19}}{k^{2}} \int \frac{|d u|}{|u-w|^{2 \alpha}|u-1|^{2-2 \alpha}} \\
& \leqslant \frac{2 c_{20} n}{k^{2}}+\frac{2 c_{19}}{k^{2}}\left\{\int \frac{|d u|}{|u-w|^{2}}\right\}^{\alpha}\left\{\int \frac{|d u|}{|u-1|^{2}}\right\}^{1-\alpha}
\end{aligned}
$$

The last inequality is because of Hölder's inequality. Hence

$$
\begin{equation*}
\left|B_{2}(w)\right| \leqslant \frac{2 c_{20} n}{k^{2}}+\frac{c_{21} n^{\alpha}}{k^{1+x}} \tag{4.5}
\end{equation*}
$$

holds in both cases $1 \leqslant \alpha<2$ and $0<\alpha<1$.
By (1.3) we have

$$
\Psi^{\prime \prime}(u)=-\frac{(\alpha-1) \lambda(u)}{u^{2}}\left(u^{-1}-1\right)^{x-2}+\lambda^{\prime}(u)\left(u^{-1}-1\right)^{x-1}
$$

Hence

$$
\begin{align*}
\left|B_{3}(w)\right| \leqslant & \frac{c_{22}}{k^{2}} \int \frac{|\lambda(u)||u-1|^{\alpha-2}}{|\Psi(u)-\Psi(w)|}|d u| \\
& +\frac{c_{22}}{k^{2}} \int \frac{\left|\lambda^{\prime}(u)\right||u-1|^{\alpha-1}}{|\Psi(u)-\Psi(w)|}|d u| \\
= & B_{31}(w)+B_{32}(w) \tag{4.6}
\end{align*}
$$

By (2.1) we have

$$
B_{31}(w) \leqslant \frac{c_{23}}{k^{2}} \int \frac{|u-1|^{\alpha-2}|d u|}{|u-w|(|u-1|+|u-w|)^{\alpha-1}}
$$

If $\alpha \geqslant 1$ we have

$$
\begin{aligned}
B_{31} & \leqslant \frac{c_{23}}{k^{2}} \int \frac{|d u|}{|u-w||u-1|} \\
& \leqslant \frac{c_{23}}{k^{2}}\left\{\int \frac{|d u|}{|u-w|^{2}}\right\}^{1 / 2}\left\{\int \frac{|d u|}{|u-1|^{2}}\right\}^{1 / 2} \\
& \leqslant \frac{c_{24} n^{1 / 2}}{k^{3 / 2}}
\end{aligned}
$$

In the case when $0<\alpha<1$

$$
\begin{aligned}
B_{31}(w) & \leqslant \frac{c_{23}}{k^{2}} \int \frac{|u-1|^{1-\alpha}+|u-w|^{1-\alpha}}{|u-w||u-1|^{2-\alpha}}|d u| \\
& =\frac{c_{23}}{k^{2}} \int \frac{|d u|}{|u-w||u-1|}+\frac{c_{23}}{k^{2}} \int \frac{|d u|}{|u-1|^{2-\alpha}} \\
& \leqslant \frac{c_{24} n^{1 / 2}}{k^{3 / 2}}+\frac{c_{25} n^{\alpha}}{k^{2}} \int \frac{|d u|}{|u-1|^{2-\alpha}} \\
& \leqslant \frac{c_{24} n^{1 / 2}}{k^{3 / 2}}+\frac{c_{26} n^{\alpha}}{k^{1+\alpha}}
\end{aligned}
$$

Hence

$$
\begin{equation*}
B_{31} \leqslant \frac{c_{24} n^{1 / 2}}{k^{3 / 2}}+\frac{c_{26} n^{\alpha}}{k^{1+\alpha}} \tag{4.7}
\end{equation*}
$$

holds in both cases $1 \leqslant \alpha<2$ and $0<\alpha<1$.
Since $\lambda(u) \in \operatorname{Lip}_{\beta}$ we have [12, p. 74]

$$
\left|\lambda^{\prime}(u)\right| \leqslant c_{27}\left(1-\left|u^{-1}\right|\right)^{\beta-1}, \quad|u| \geqslant 1 .
$$

Hence

$$
B_{32} \leqslant \frac{c_{28}}{k^{1+\beta}} \int \frac{|u-1|^{\alpha-1}}{|u-w|(|u-1|+|u-w|)^{\alpha-1}}|d u| .
$$

If $\alpha \geqslant 1$, we have

$$
\begin{aligned}
B_{32}(w) & \leqslant \frac{c_{28}}{k^{1+\beta}} \int \frac{|d u|}{|u-w|} \\
& \leqslant c_{29} \frac{\log n}{k^{1+\beta}}
\end{aligned}
$$

In the case when $0<\alpha<1$, we have

$$
\begin{aligned}
B_{32}(w) & \leqslant \frac{c_{28}}{k^{1+\beta}} \int \frac{|d u|}{|u-w|}+\frac{c_{28}}{k^{1+\beta}} \int \frac{|d u|}{\left|u-w^{\alpha}\right| u-\left.1\right|^{1-\alpha}} \\
& \leqslant \frac{c_{29} \log n}{k^{1+\beta}}+\frac{c_{28}}{k^{1+\beta}}\left\{\int \frac{|d u|}{|u-w|}\right\}^{\alpha}\left\{\int \frac{|d u|}{|u-1|}\right\}^{1-\alpha} \\
& \leqslant \frac{c_{30} \log k}{k^{1+\beta}} .
\end{aligned}
$$

Then we always have

$$
\begin{equation*}
B_{32} \leqslant \frac{c_{30} \log k}{k^{1+\beta}}, \quad 0<\alpha<2 \tag{4.8}
\end{equation*}
$$

Combining (4.3)-(4.8) we conclude

$$
\left|a_{k}(w)\right| \leqslant c_{31}\left(\frac{n^{1 / 2}}{k^{3 / 2}}+\frac{n^{\alpha}}{k^{1+\alpha}}+\frac{\log k}{k^{1+\beta}}\right)
$$

Together with (4.2) we have

$$
\left|\log \frac{\omega_{n}(z)}{d^{n}\left(w^{n}-1\right)}\right| \leqslant c_{32}, \quad z=\Psi(w), \quad|w|=1+\frac{c_{0}}{n}
$$

That implies (4.1).

5. Marcinkiewicz-ZyGmund Inequalities

We extend the Marcinkiewicz-Zygmund inequalities to the admissible domain.

Lemma 6. Suppose $1<p<\infty$; then for any P_{n-1}, a polynomial of degree at most $n-1$, we have

$$
\left\|P_{n-1}\right\|_{p} \leqslant c_{33}\left\{\sum_{k=1}^{n}\left|P_{n-1}\left(z_{n, k}\right)\right|^{p}\left|z_{n, k+1}-z_{n, k}\right|\right\}^{1 / p}
$$

Remark. By the Bernstein inequality we know that $\left\|P_{n-1}\right\|_{p, n} \leqslant$ $c_{34}\left\|P_{n-1}\right\|_{p}$; from lemma 2 we can easily get

$$
\left\{\sum_{k=1}^{n}\left|P_{n-1}\left(z_{n, k}\right)\right|^{p}\left|z_{n, k+1}-z_{n, k}\right|\right\}^{1 / p} \leqslant c_{35}\left\|P_{n-1}\right\|_{p}
$$

This is the other part of Marcinkiewicz-Zygmund inequalities.
Proof. From Lemma 4, there exists an $h \in E^{p}\left(D_{n}\right)$, such that

$$
h\left(z_{n, k}\right)=P_{n-1}\left(z_{n, k}\right)
$$

and

$$
\begin{equation*}
\|h\|_{p, n} \leqslant c_{16}\left\{\sum_{k=1}^{n}\left|P_{n-1}\left(z_{n, k}\right)\right|^{p}\left|z_{n, k+1}-z_{n, k}\right|\right\}^{1 / p} \tag{5.1}
\end{equation*}
$$

Since $P_{n-1}(z)$ is the Lagrange interpolation polynomial to $h(z)$ at $\left\{z_{n, k}\right\}$, we have

$$
P_{n-1}(z)=\frac{1}{2 \pi i} \int_{\Gamma_{n}} \frac{\omega_{n}(\zeta)-\omega_{n}(z)}{\omega_{n}(\zeta)} \frac{h(\zeta)}{\zeta-z} d \zeta .
$$

For $z \in D_{n}$, we have

$$
\begin{aligned}
h(z)-P_{n-1}(z) & =\frac{\omega_{n}(z)}{2 \pi i} \int \frac{f(\zeta)}{\omega_{n}(\zeta)} \frac{d \zeta}{\zeta-z} \\
& =\omega_{n}(z) \mathbb{P}\left(\frac{f}{\omega_{n}}\right)(z), \quad z \in D_{n}
\end{aligned}
$$

By (2.6) and Lemma 5

$$
\begin{aligned}
\left\|h-P_{n-1}\right\|_{p} & \leqslant \max _{z \in \Gamma_{n}}\left|\omega_{n}(z)\right|\left\|\mathbb{P}\left(\frac{h}{\omega_{n}}\right)\right\|_{p} \\
& \leqslant c_{6} \max _{z \in I_{n}}\left|\omega_{n}(z)\right|\left\|\frac{h}{\omega_{n}}\right\|_{p, n} \\
& \leqslant c_{6} \max _{\zeta, z \in \Gamma_{n}}\left|\frac{\omega_{n}(z)}{\omega_{n}(\zeta)}\right|\|h\|_{p, n} \\
& \leqslant c_{6} c_{17}^{2}\|h\|_{p, n} .
\end{aligned}
$$

Since $\mathbb{P} h=h$, we also have $\|h\|_{p} \leqslant c_{6}\|h\|_{p, n}$. Then

$$
\left\|P_{n-1}\right\|_{p} \leqslant c_{36}\|h\|_{p, n}
$$

And by (5.1), we completed the proof of Lemma 6.

6. Proof of the Theorem

It is sufficient to show that

$$
\left\|L_{n}(f, z)\right\|_{p} \leqslant c_{37} \max _{z \in D}|f(z)|
$$

holds for $1<p<\infty, f \in A(\bar{D})$.
From Lemma 6

$$
\begin{aligned}
\left\|L_{n}(f, z)\right\|_{p} & \leqslant c_{33}\left\{\sum_{k=1}^{n}\left|f\left(z_{n, k}\right)\right|^{p}\left|z_{n, k+1}-z_{n, k}\right|\right\}^{1 / p} \\
& \leqslant c_{33}|\Gamma|^{1 / p} \max _{z \in D}|f(z)|
\end{aligned}
$$

where $|\Gamma|$ means the length of Γ. This completes the proof of the theorem.

References

1. J. L. Walsh and A. Sharma, Least squares and interpolation in the roots of unity, Pacific J. Math. 14 (1969), 727-730.
2. J. H. Curtiss, Convergence of complex Lagrange interpolation polynomials on the locus of the interpolation points, Duke Math. J. 32 (1965), 187-204.
3. S. Ya. Al'per and G. I. Kalinogorskaya, The convergence of Lagrange interpolation polynomials in the complex domain, Izv. Vyess. Uchebn. Zaved. Mat. 11 (1969), 13-23. [In Russian]
4. X. C. Shen and L. Zhong, Approximation in the mean by Lagrange interpolating polynomials in the complex plane, Chinese Sci. Bull. 34 (1989), 1321-1326.
5. X. C. Shen, Order of approximation by Hermite-Fejér interpolation polynomials in the complex plane, Adv. Math. 19 (1990), 93-104.
6. X. C. Shen and T. L. Tu, Complex interpolatory approximation, Adv. Math. 20 (1991), 152-179. [In Chinese]
7. M. Thompson, Interpolation to continuous data on curves with corners, J. Approx. Theory 5 (1972), 199-211.
8. V. K. Dziadyk, "Introduction to the Theorem of Uniform Approximation of Functions by Polynomials," Nauk, Moscow, 1977. [In Russian]
9. E. M. Dyn'kin, The rate of polynomial approximation in the complex domains, in "Lecture Notes in Mathematics" (V. P. Havin and N. K. Nikol'skii, Eds.), Vol. 864, Springer-Verlag, New York/Berlin, 1981.
10. J. B. Garnett, "Bounded Analytic Functions," Academic Press, San Diego, 1981.
11. Сh. Pommerenke, "Univalent Functions," Vandenhoeck-Ruprecht, Gottingen, 1975.
12. P. L. Duren, "Theory of H^{p} Spaces," Academic Press, New York, 1970.
