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In this paper, we prove mean convergence of interpolation polynomials in a
domain with some corners. ,t, 1994 Academic Press. Inc.

1. INTRODUCTION

Let Dc iC be a domain bounded by a Jordan curve r, and let U be the
unit disk. z = 'P(w) denotes the one-to-one conformal mapping of iC\ D
onto C\15, normalized by the condition 'P( 00) = 00, 'P '( 00) > O. We denote
the inverse mapping of 'P by <P.

Let

A(D) = {f:f analytic in D and continuous on D}.

In the case r is rectifiable, let

{ }
1~

IIfllp = t If(z)IP Idzl . (1.1 )

For Sn consisting of n distinct points on r, Ln(f, z) denote the Lagrange
interpolation polynomials to 1 E A(D) on Sn' Generally, we cannot expect
to find a sequence {Sn} such that Ln(f, z) is convergent uniformly on D for
any IE A(D). Then it is reasonable to consider mean convergence of
{Ln(f, z)} on r. When D = U and

Sn = {e(2k1r/I1) i, k = 1,2, ..., n}

it is well known [1] that

lim 11/(z) - Ln(f, z)ll p = 0
" - + oc

for 0 < p < 00, f E A(D).
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(1.2)
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In the general case, Sn usually consists of the Fejer points on r, which
means

S - {'TI( (2knln) i) k - 1 2 }n - T e ,- , , ... , n .

Curtiss [2] showed (1.2) when p = 2 and r is an analytic curve. AI'per and
Kalinogorskaya [3] proved (1.2) when r is 2 + b smooth. Recently, Shen
and Zhong [4] got the same result when r is I + b smooth. However, no
corners are allowed in these papers. In [7], Thompson stated theorems for
uniform convergence on closed subsets of D that cover cases when r
possesses some corners with exterior angles not less than n. As we know,
uniform convergence on closed subsets of D is much weaker than mean
convergence on r, and the restriction on exterior angles would lose some
generalities. We refer the reader to [5,6] for surveys for the problem and
its history.

In this paper, we prove (1.2) in the case when r possesses some
corners. We call D admissible, if there exist {rj ,j=I, ...,K}caU,
{'Xj ,} = 1, ..., K} c (0,2), C l > 0, C2 > 0, and f3 > 0, such that

lui ~ 1

and

where

k

A(U)= If'1(U) n (u- l _r
j
- 1 )1-aJ•

j~l

(1.3)

Clearly, if D is admissible, r posseses a continuously turning tangent
except at the points If'(rj ), j= 1, .." K, at which r has half tangents with
exterior angles 7T.'Xj' Conversely, if r consists of a finite number of arcs with
continuous curvature and the exterior angles not being 0, 2n, then D is
admissible.

The main result in this paper is the following.

THEOREM. Suppose that 0< p < 00 and D is admissible and that Sn
consists of the Fejh points. Then for any f E (AD),

lim Ilf(z)-LnCf, z)llp=O.
n~ oc

As in [5], the main idea of proof is using the theory of singular integral.
First, we show that the Fejer points are uniformly separated inside a level
curve. Second, we find a function h to interpolate f, which may not be a
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polynomial but in analytic inside the level curve. Third, Ln(f, z) is taken as
the weighted singular integral of h. Finally, we show that the interpolation
polynomial operators L n : A(D) -+ LP are bounded uniformly by the theory
of singular integral and the estimation of the weight.

In the following the domain D is always assumed admissible, and c;

denote positive constant only depending on D and p.

2. PRELIMINARY FACTS

For 1~ lui, Iwl ~ 2, we have [8, p.387]

-1 1'P(u)-'P(w)1
c3 ~ I~C3'lu-wl (IU-'kl + lu-wlYk

-

where 'k is the closest point to u among {'j' j = 1, ..., K}.
For Z E C, E c C, let

d(z, E) = inf Iz - (I;
(e E

then for p> 1, we have

where

Let

(2.1 )

(2.2)

k= 1, 2, ..., n, (2.3 )

be nth Fejer points. We take zn,n+l=zn.I' By (2.1) and (2.2), we can
find Co, such that for rn=Yl+co/n,

k= 1, 2, ..., n, (2.4)

and

k= 1, 2, ..., n, (2.5 )

hold.
Let D n be the interior of r n • For FE LP(rn ), we denote

{ }
I~

IIFII p, n = t, IF(ZW IdzI .
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When 1< p < OC, we define
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1 f F(OIP'F(z)=-. -dC
2m Tn (-z

then IP'FE £P(Dn), and [9]

For ZEC, r>O, let

U(z, r)= g: I'-zl <r}

and let

S(z, r) = f Id(l·
~ E Fn V(=, r)

Since r is piecewise smooth, we have

(2.6)

(2.7)

Since D is a Lipschitz domain, for any z l' Z2 E r, there exists an arc

z:z; c r connecting z 1 and Z2, such that

3. UNIFORM SEPARATED

Points {wj } in U are called '11 -uniformly separated, if

and we call {w j } '12-weakly separated, if

(2.8 )

for all k.

Let Zo be a fixed point in D, and let <Pn: Dn~ U be the conformal map
ping satisfying <Pn(ZO) = °and <p~(zo)> 0. We denote the inverse mapping of
¢In by t/Jn-
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LEMMA 1. For any n > 0, {tPn(Zn, d, k = 1, 2, ..., n} are fg-weakly
separated.

Proof Let tPn. k: Dn --+ U be the conformal mapping satisfying
tPn, k(Zn, d =°and tP~, k(Zn. d > 0. Then [9, p.96]

It is very easy to verify that [11]

tP*(w) = tPn,k(d(zn.k' Tn) W + Zk.n) E S.
tP~,k(Zn,k) d(zn,k> Tn)

By the Koebe's !-theorem, we know that {tPn,k(Z): !z-zk,nl <d(zn,k> Tn}}
covers {w: Iwl < itP~, k(Zn, k) d(zn, k' r n)}·

By (2.4), for j # k,

I tPn(zn,j)-tPn(Zn,k) 1= ItPn,k(Zn,j)/
I-tPn(zn,k) tPn(zn,j)

1 ,>4" tPn, k(Zn, d d(zn, b rn)

I
>16' I

A positive meausre J1 on D n is called ~1J -Carleson measure, if for any
Z Ern' r > 0, we have

Let c5 z be the unit mass concentrated at z,

LEMMA 2. For any n > 0, let

n

Vn= Lizn, k+ I - Zn, kI (j Zn, k'

k~l

Then vn is a c9 -Carleson measure on Dn,

Proof In fact, we only prove the lemma when n is sufficiently large, For
any (E Tn' r > 0, there exists (* E C\Dn such that

1(* - (I = r

and

(3.1 )

640/7712-3
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For ZE U«(, r), we have

Then
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Zn. k E U«(, r)

n Iz -Z I:( 4r2 I n, k+ 1 ~' k

k=l IZn,k-,·1

For any ZEz:;z",k+I' by (2,8) we have

IZ - Z n, k I :( lITn, k I

:( /z-;;;:, k + II

Then

:(CSIZn.k+l-Zn,kl + IZn.k-C*1

:( Cs d(z", b r n ) + IZn. k - (*1

:((1 +CS ) IZn,k-(*I,

That means

(3.2)

-Z E Zn. k Z". k + I .

Hence

:( Cll d(v* .I, ,F)
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The last inequality is because of (2.7). By (3.1) and (3.2) we have
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LEMMA 3. For any n > 0, {~n(Zn. k), k = 1, 2, ..., n} are c 13 -uniformly
separated.

Proof Since we have shown that {~n(zn,k), k = 1, 2, ..., n} are f6-weakly
separated, we only need prove that

n

J1n= L (1-I~n(zn.kW)c5¢n(znkl
k=1

is a cwCarleson measure on U [10, p.287].
Since vn is a c10 -Carleson measure on Dn' then for any h EEl (D n), we

have [9]

Let

then g E H!, and

g(w) = l/J~(w) ho l/Jn(w), WEU, (3.3 )

n

L Igo~n(Zn,k)II~~(Zn,k)llzn,k+1-Zn,kl ~CI51IgI11'
k=1

By the Koebe distortion theorem [9, p. 96] and (2.5)

1 -I~n(zn, kW ~ 8 I~~(zn. dl d(zn. k, Fn)

~81~~(zn.dllzn,k+l-Zn,kl.

Then

(3.4 )

Since very function in HI can be written in the form of (3.3), the above
inequality holds for any g E H!, which is equivalent to that J1n is a
c14 -Carleson measure on U. I
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LEMMA 4. Suppose 0 < p < 00, {ak> k = 1, ..., n} are complex numbers.
There exists hE £P(D n ) such that

k = 1, 2, ... , n, (3.5)

and

Proof Let

k = 1, 2, ... , n.

From Lemma 3 we can find agE H P such that [lOJ

k = 1, 2, ... , n,

and

Let

Then we have (3.5). By (3.4) we have

Ilhll p.n = Ilgllp~81/PCI6 ttl lakl P\Zn.k+I-Zn.klfiP. I

4. AN ESTIMATION OF Iwn(z)1 ON F n

Let

n

wn(z)= n (Z-Zn,k)'
k ~ I

LEMMA 5. For any Z E Fn

where d = lJI'( (0).

(4.1 )
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Proof As in [4], the function
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{

'l'(w) - 'l'(u)
d(w - u) ,

X(w, u) = 'l"(w)

-d-'

u#w

u=w

is clearly an analytic function of u for fixed w, lui> 1, Iwl > 1, and
X( w, etJ) = 1. The univalence of 'l'(w) implies that X( w, u) cannot vanish for
lui> 1, Iwl > 1.

Let log X( w, u) denote the branch of logarithm for which log x( w, CIJ) = 0;
then we have the Laurent series

en a(w)
log X(~', u) = L _J_._.

j~ I uJ

For Z= 'l'(w)EFn , we have

(4.2)

For Iwl = 1+co/n, k~n, we now estimate lak(w)l. Evidently

( ) 1 f k + I 8
2

log x( w, u) d
ak w = u 2 u

2k(k + 1) ni lu' = I + co/2k 8u

1 Uk + 1 du 1 Uk + 1[ 'l' '(u) ] 2

=2k(k + 1) nJ (u - W)2 - 2k(k + 1) nJ ['l'(u) _ 'l'(W)]2 du

1 Uk+I'l'''(U)
+ f du2k(k + 1) ni 'l'(u) - 'l'( w)

=B,(w) + B2(w) + B)(w). (4.3 )

For the sake of simplicity we omit the path of integration lui = 1+ co/2k
in the following part of this section. There is no essential effect and nota
tions and computation are much easier if we assume that there is only one
corner on F, r 1 = 1 and (XI = (x.

Since lui < Iwl, we have

(4.4 )
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By (1.3) we have
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/

(1 +C /2k)k+l 1..1.(u)llu-112~-2

/B2(W)I~ 2k(;+1)1T. J 1'P(u)-'P(w)12 Idul

C19! IU-W~-2Idul

~kl lu-wI2(lu-ll+lu-wj)2~-2'

If IX ~ 1, clearly we have

In the case when 0 < IX < 1, we have

The last inequality is because of Holder's inequality. Hence

holds in both cases 1~ IX < 2 and 0 < IX < 1.
By (1.3) we have

Hence

CnS 1..1.(u)llu- W- 2

IB3(w)1 ~ e 1'P(u)- 'P(w)1 Idul

Cn f 1),'(u)llu - W- 1
Idul

+ k 2 1'P(u)- 'P(w)/

=B 31 (W) + Bdw).

(4.5 )

(4.6)
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By (2.1) we have

B e23flu - 1\ ~ - 2 Idu I
31(W)~k2 lu-wl (lu-ll+lu-wl)~-I'

If ex ~ 1 we have

B e23 f jdul
31~-

k 2 lu- wllu-11

~e23{f Idul }1/2{f Idul }1/2
k 2 lu-wl 2 lu-11 2

In the case when 0 < r:t < 1

Hence

holds in both cases 1~ r:t < 2 and 0 < r:t < 1.
Since A(U) E Lipp we have [12, p. 74]

149

(4.7)

Hence

lui ~ 1.

e f lu-W- 1

B32~kI2:p lu-wl (lu-ll+lu-wW- 11du /.
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If IX ~ 1, we have
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C28 f Idul
Bdw)~kl+P lu-wl

log n
~ C29 k 1 +P'

In the case when 0 < IX < 1, we have

Then we always have

0< IX < 2. (4.8 )

Together with (4.2) we have

z == 'P(w), Iwl == 1+ co.
n

That implies (4.1). I

5. MARCINKIEWICZ-ZYGMUND INEQUALITIES

We extend the Marcinkiewicz-Zygmund inequalities to the admissible
domain.

LEMMA 6. Suppose 1 < p < 00; then for any Pn _ l' a polynomial of
degree at most n - 1, we have
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(5,1)

Remark. By the Bernstein inequality we know that II Pn _ til P. n ~

C 34 II Pn _ III p; from lemma 2 we can easily get

ttl IPn-l(Zn,kW IZn,k+I-Zn,klfIP ~c351IPn-lllp'

This is the other part of Marcinkiewicz-Zygmund inequalities,

Proof From Lemma 4, there exists an hE E P(D n ), such that

h(zn. k) = Pn- I (zn, k)

and

Ilhllp,n~CI6 ttl IPn-l(zn,kW IZn.k+I-Zn,klfIP

Since Pn_l(z) is the Lagrange interpolation polynomial to h(z) at {zn,d,
we have

For Z E D n , we have

h(z)-P (Z)=wn(z)f !(O .-!!L
n-I 2ni wn((H-z

= wn(z) P (~J (z), Z E D n·

By (2,6) and Lemma 5

Ilh-Pn-Illp~~a:'IWn(z)lllp(;J(lp

~c6max IWn(Z)III~11
zer", W n p.n

~ C6 ~ax \Wn((~)) Illh II p, n
, . • eFn W n ~

~ c6ci7 Ilhll p , n'

Since ~h=h, we also have IIhllp~c61Ihllp,n' Then

IIPn_t1lp~c361Ihllp,n'

And by (5.1), we completed the proof of Lemma 6. I
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6. PRooF OF THE THEOREM

It is sufficient to show that

holds for 1 < p < 00,1 E A(15).
From Lemma 6

{
" }l/P

IIL,,(j, z)llp~C33 k~1 I/(z".kW IZ".k+l-Z".kl

~ C33 1T1 1
/
P max I/(z)l,

Z E 15

where IFI means the length of r. This completes the proof of the theorem.
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