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In this paper, we prove mean convergence of interpolation polynomials in a
domain with some corners. € 1994 Academic Press, Inc.

1. INTRODUCTION

Let D < C be a domain bounded by a Jordan curve I, and let U be the
unit disk. z= ¥(w) denotes the one-to-one conformal mapping of C\U
onto C\D, normalized by the condition ¥(0)= o0, ¥'(cc) > 0. We denote
the inverse mapping of ¥ by &.

Let

A(D)= {f: f analytic in D and continuous on D}.

In the case I' is rectifiable, let

1p
11, =4[, 17 e} (L1)

For S, consisting of » distinct points on I, L,(f, z) denote the Lagrange
interpolation polynomials to fe A(D) on S,. Generally, we cannot expect
to find a sequence {S,} such that L,(f, z) is convergent uniformly on D for
any fe A(D). Then it is reasonable to consider mean convergence of
{L{f, z)} on I When D=U and

S,={e®" k=12 .,n}
it 1s well known [1] that

im || f(z) - L,(f, 2)ll,=0 (1.2)

n— +oc

for 0< p< oo, fe A(D).

139
0021-9045/94 $6.00

Copyright T 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.



140 LEFAN ZHONG

In the general case, .S, usually consists of the Fejér points on I, which
means

S, = (P k=12, ..n).

Curtiss [2] showed (1.2) when p=2 and I' is an analytic curve. Al'per and
Kalinogorskaya [3] proved (1.2) when " is 24+ é smooth. Recently, Shen
and Zhong [4] got the same result when I” is 1 + é smooth. However, no
corners are allowed in these papers. In [7], Thompson stated theorems for
uniform convergence on closed subsets of D that cover cases when I’
possesses some corners with exterior angles not less than n. As we know,
uniform convergence on closed subsets of D is much weaker than mean
convergence on I, and the restriction on exterior angles would lose some
generalities. We refer the reader to [5, 6] for surveys for the problem and
its history.

In this paper, we prove (1.2) in the case when [” possesses some
corners. We call D admissible, if there exist {r,j=1,.,K}cdl,
{a,j=1,..,K}=(0,2), ¢, >0, ¢,>0, and >0, such that

|A(u)] = ¢y, lu] =1
and
[A(uy) = Aluy)| Sy luy —uy| %, lae, ], luy =1,
where
k
W)= [T @ ') = (1.3)

i=1

Clearly, if D is admissible, I" posseses a continuously turning tangent
except at the points ¥(z,), j=1, .., K, at which I" has half tangents with
exterior angles no;. Conversely, if I” consists of a finite number of arcs with
continuous curvature and the exterior angles not being 0, 2r, then D is
admissible.

The main result in this paper is the following.

THEOREM. Suppose that 0 < p<wo and D is admissible and that S,
consists of the Fejér points. Then for any fe (AD),

lim /()= Lo(£. 2}, = 0.

As in [5], the main idea of proof is using the theory of singular integral.
First, we show that the Fejér points are uniformly separated inside a level
curve. Second, we find a function A to interpolate f, which may not be a
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polynomial but in analytic inside the level curve. Third, L,(f, z) is taken as
the weighted singular integral of 4. Finally, we show that the interpolation
polynomial operators L,: A(D)— L? are bounded uniformly by the theory
of singular integral and the estimation of the weight.

In the following the domain D is always assumed admissible, and ¢,
denote positive constant only depending on D and p.

2. PRELIMINARY FACTS

For 1< |u|, |w| <2, we have [8, p. 387]

CJISIH‘M (’Ilsil(—u)fkl-&:l(lzlﬂ Wl)“k”\g’ @b
where 7, is the closest point to » among {z;, j=1, .., K}.
For zeC, EcC, let
d(z, E)=inf |z —{|;
{eE
then for p > 1, we have
|P(e") — P(pe™)| S cqad(Ple"), 7,), (2.2)
where
Ye= {12 =p}.
Let
Zy o= P(e@®¥MY)  k=1,2,..n, (2.3)

be nth Fejér points. We take z, ,,,=2z,,. By (2.1) and (2.2), we can
find ¢;, such that for I', =7y, ,/n»

d(z, 4, Ty)Smin |z, ;—z, 4], k=12, .,n, (2.4)
j#*k
and
lzn.k+1_zn,k|<csd(zn,k’ Fn)7 k=1’27 ey n; (25)
hoid.

Let D, be the interior of I,,. For Fe L?(I',), we denote

1/p
17,0 ={[ 1P a1}
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When 1 < p < o, we define

_ o F(Q) 3 )
PF(z) =5~ frnc_zdg, zeD,;
then PFe E/(D,), and [9]
1PF, <cs 1 Fl, (2.6)

For zeC, r>0, let
Ulz, r)={{:1{—z] <r}

and let

Stz r)=| q

e Uiz, r)
Since I is piecewise smooth, we have
S(z, r)y<c,r. 2.7)

Since D is a Lipschitz domain, for any z,, z,e I, there exists an arc

—— .
z,z,< I connecting z, and z,, such that

Fizal = |__ldzl <eylz,—zal (23)

PR}

3. UNIFORM SEPARATED

Points {w;} in U are called #,-uniformly separated, if

. |w; — wyl
inf [| ——>n,>0
of 1 7725, 17

b3 w"
and we call {w;} n,-weakly separated, if

Wi Wk

- =n,>0, for all k.
el Wk W’j

inf
itk

Let z, be a fixed point in D, and let ¢,: D, — U be the conformal map-
ping satisfying #,(z,) =0 and ¢,(z,) > 0. We denote the inverse mapping of

¢n by wn'
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LemMa 1. For any n>0, {¢,(z,x),k=1,2,..,n} are +-weakly
separated.
Proof. let ¢, ,.:D,—»U be the conformal mapping satisfying
$n (2, ) =0 and ¢, ((z, x)>0. Then [9, p. 96]
¢r,|,k(zn,k) d(zn,k’ Fn) > %
It is very easy to verify that [11]

* =¢n,k(d(zn‘ks Fn) w +Zk,n)
P = G D dz i T

By the Koebe’s j-theorem, we know that {¢, ((z): |z —2z; .| <d(z, . T)}
covers {W: ‘W‘ < %¢:x,k(zn,k) d(zn.k? rn)}
By (2.4), for j#k,

¢n(zn, j) - ¢n(zn, k)
1— ¢n(zn, k) ¢n(zn.j)
1

>Z¢;l.k(zn,k) d(zn,k’ Fn)

eSs.

=@ iz, )l

1
=Z2—.
16 I

A positive meausre y on D, is called n;-Carleson measure, if for any
zel,, r>0, we have

wU(z, r)) <nsr.

Let J, be the unit mass concentrated at z.

LemMa 2. For any n>0, let
n
Va= Z |Zn.k+l—zn,k| 6:,,'1('
k=1

Then v, is a ¢o-Carleson measure on D,,.

Proof. 1In fact, we only prove the lemma when » is sufficiently large. For
any (e[, r>0, there exists {* e C\D, such that

Ii*=Cl=r
and

d({*, )= cyor. (3.1)

640/77/2-3
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For ze U(L, r), we have

<4 4
P 2=

Tl =

Then

UG )= X zaker— 24l

zn k€ UG, r)

< 4r? i 'zn,k+1_zn.k'
~

2
k=1 ,Zn,kf\:"

For any zez, .z, v ., by (2.8) we have

—Z, 4l

o
3
w
=
>
+

Then

[&]

_Zn,k’ + lzn,k—c*l
Cg }zn,k+l_zn,k’ + lzn,k_c*l
Cg d(zn,k’ Fn)+ lzn,k_C*‘

(1 +¢g) |z, 6 =T

NN

That means

L _(+e) —

|2 k= C* "1z =¥

Hence

n

i |zn,k+1“‘2’n,k|<(l+c )2 Z
= 8 —
k=1 |Z,,_k—C*|2 k=1 %nmkink+1 z

dz|
=(1+cy) f E l 7 |2

=(l+c) |

2
d(r. Ty t

1

< ————
AT T)

Z€Zy kZnk+1-

—g*lz

+o dS({* 1)

(3.2)
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The last inequality is because of (2.7). By (3.1) and (3.2) we have
V,,(U(C, r))<012r' I

LEMMA 3. For any n>0, {¢.(z,+) k=1,2,.,n} are c,s-uniformly
separated.

Proof. Since we have shown that {¢,(z, ), k=1,2, .., n} are -weakly
separated, we only need prove that

n

Ky = Z (1 - l¢n(zn.k)!2) 54’;.(5-.“

k=1

is a ¢,4-Carleson measure on U [ 10, p. 287].
Since v, is a ¢ o-Carleson measure on D, then for any he E'(D,), we
have [9]

] h ” nk+1 " “nkl = h| dv,
X Venr =2l = ] 1Bl
<cps Al
Let
gw)=y(w)hoy,(w), wel, (3.3)

then ge H!, and

n
2 180 bu(zn N G0z ) 12Zn k1~ Zn il Sis 81
k=1

By the Koebe distortion theorem [9, p. 96] and (2.5)
1—1¢ulz, )12 <8 1@0(z0 )l d(z, 405 T)
<8UGnlzm i |zn st = Zn il (3.4)

Then

ffu gl du, <8cis gl

Since very function in H' can be written in the form of (3.3), the above
inequality holds for any ge H!, which is equivalent to that u, is a
¢,4-Carleson measure on U. |
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LEMMA 4. Suppose 0<p<oo, {a,, k=1,..,n} are complex numbers.
There exists he E?(D,) such that

h(z, ) =ay, k=1,2,..,n, (3.5)

and

n L/p
||h||p.n<016 { Z la,|? |Zn,k+l_zn,kl}

k=1
Proof. Let
bk =4y [¢;t(zn‘k)] B l/p, k = l, 2’ vy ML
From Lemma 3 we can find a ge H? such that [10]
(go¢n)(zn,k)=bk’ k=l,2, . N,
and
n L/p
IIgII,,SCns{ 2 bl P (1~ l¢n(z,,,k)|2)} :
k=1
Let
h(z)=[4,(2)1"" (g°4.)z) € E?(D,).

Then we have (3.5). By (3.4) we have

/4

n 1
Hh“p,n=“g”pggl/pcl(){ Z ‘aklpizn,k+l_zn,k‘} . I
k=1

4. AN ESTIMATION OF |w,(2)| ON I,

Let

k=1
LemMma 5. For any ze T,
¢ < w;(nZ) <0y, (4.1)

where d=¥'(0).
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Proof. As in [4], the function

F(w) — P(u)
dw—u)
¥'(w)
d

X(Wa u) =

, u=w

is clearly an analytic function of u for fixed w, ju|>1, |w/>1, and
¥(w, o0} = 1. The univalence of ¥(w) implies that y(w, u) cannot vanish for
[ul > 1, [w|>1.

Let log y(w, u) denote the branch of logarithm for which log x(w, ¢ )= 0;
then we have the Laurent series

a;(w)
og 0= 5. 470
For z=¥Y(w)e l,, we have
W (Z) + %0
— = ) 4.2
log gy =" L aulw) (42)

For |w| =1+ c¢y/n, k =n, we now estimate |a,(w)|. Evidently

1 e 8% log x(w, u)

- d
2k(k+ 1) mi ‘[lu} =1+cp/2k ou’ )

ag(w)=

1 u*+ ' du t u ()]’
k(k+1)7id (u—w)? 2k(k+ V)il [Pu)— PP

N 1 f Wk (y)
ek + 1) 7i ) Plu)— Pom)

= B,(w) + B,(w) + B;(w). (4.3)

For the sake of simplicity we omit the path of integration |u| =1+ ¢4/2k
in the following part of this section. There is no essential effect and nota-
tions and computation are much easier if we assume that there is only one
corneron I', 1,=1and a;, =a.

Since |u| < |w|, we have

B,(w)=0. (4.4)
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By (1.3) we have

IBz(w”<(1+Co/2k)"“fIrl(u)l lu—1*"2

Uk +)m | P(u) — P(w)|? el

wa Sza Z,dul
lu—WI2 lu— 1+ |u—w)>*—%

If =1, clearly we have

C19 [du| Caott
B <3F [ o e

In the case when 0 < ¢ < 1, we have

[By(w)| <5

1122« _ 2--2a
2c19j|u 1] + |u—w| \du

k2 lu—w|? lu—1]>"%

2Cl9f | dul 2C19J‘ |du|
|ee— | —

w|2 WIZa Iu*

2¢,00 2619{ |du| }"‘{ | du| }"“
L~—4+-— .
e TR flu—wlz flu—l|2

The last inequality is because of Holder’s inequality. Hence

1l2~21

2¢50n +c21n°‘
k2 kl+x

|By(w)| <

holds in both cases 1 <o <2 and O<a< 1.
By (1.3) we have

(c—1) Mw)

V' (u)y= ————(u "= 1) 2+ Au)u ' —1)*" L

u
Hence
(AQ)| lu—1]*2
[P (u)— P(w)]

22 [A(u)] lw—1]"" !
K1) — #(w)

= B3;(w) + By, (w).

4
| B3(w)] Sﬁ} |du|

|du]

(4.5)

(4.6)
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By (2.1) we have

lu—1{*~ 2 |du
B0 < | G T ™

If x> 1 we have

(—'23 |du]

By <

! fiu—wl lu— 1

e f[ Nl m{f jdul 1"
) ju—w)? lu—1)?
cogn'?

In the case when 0 <a <1

c23 =1+ ju—w|!
B <3E [y
C23J' {du| szJ' |dul
ju—w| |u—1] Ju—1)2—*

coun'? Czs"f | du|
= k3/2 |u 1|2 o

624111/2 6‘26n°’
= k3/’2 kl +a°
Hence

<c24n’/2 Ca6H*
By < 2 +kl+fx

holds in both cases 1 <a<2and O<a<1.
Since A(u)e Lipg we have [12, p. 74]

A Scp(t = lu= "1 Jul>1
Hence
Cog u—1|°‘71
< .
B k'*”jlu—wl (a1 + w14

149

(4.7)
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If > 1, we have

¢ |du
Buw) <525 [ 12

lu—wl

log n
< Cy m
In the case when 0 <a < 1, we have

Ba(w) <

Cag Idu[ Crg J |dul
KPP u— AR lu—w|*ju—1|1"*

cplogn = cy |du| “{ ldu| '
<

kK't# +kl+ﬂ{-[lu—wl [u—1|
¢y logk
SR

Then we always have
O<a<2. (4.8)

Combining (4.3)-(4.8) we conclude

n'?  n® logk
la (w)l <3 <k3/2 +kl o kl +ﬂ>

Together with (4.2) we have
llog 0,(2)

4
d"(W"——l)l<C32’ Z= lIl(w)’ Iw'=l+—’f'

That implies (4.1). |

5. MARCINKIEWICZ-ZYGMUND INEQUALITIES

We extend the Marcinkiewicz-Zygmund inequalities to the admissible
domain.

LEmMMA 6. Suppose 1 < p<oo; then for any P,_,, a polynomial of
degree at most n— 1, we have

n 1/p
lan41|[p<C33{ Z [P, _ (2, )? |Zn,k+1_zn,kl} .

k=1
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Remark. By the Bernstein inequality we know that [|P,_ |, ,<
¢34 1P, 1|l from lemma 2 we can easily get

i Lip
{ z VT - T - S _Zn,k|} < Cs ”Pn—l“p'
k=1
This is the other part of Marcinkiewicz-Zygmund inequalities.
Proof. From Lemma 4, there exists an he E*(D,), such that
h(zn,k)=Pnfl(Zn,k)

and

n l/p
||h||p,n<C16{Z |Pn«l(zn,k)|p!zn,k+1—zn,k|} (51)
k=1

Since P,_,{z) is the Lagrange interpolation polynomial to hA(z) at {z, .},
we have

@,(0) —w,(z) h({)
(D,,(C) C_Z

1
=— dt.
Pn~1(z) 21“ J‘I",, C
For ze D,, we have

h(z)_Pn—l(z):

wn(Z)J S dt
27ti wn(C) C*Z

=w,(z) P (i-) (2), zeD,.
w

()

h
< ¢gmax |w,(z)] | —
zel, w,

By (2.6) and Lemma 5

Y

”h_anl”péllllalg( lwn(z)l

p.n

< ¢g max

{zely

w,.(Z)\
== \Al, .,
w0 "
<cgciy Al n-
Since Ph=h, we also have |jhll, < c4 lihf, ,. Then
Han l"p < C36 ”h“p_n'

And by (5.1), we completed the proof of Lemma 6. ||
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6. PROOF OF THE THEOREM

It is sufficient to show that

1L : 2)l, < ¢ max |£(2)

holds for 1 < p < oo, fe A(D).

From Lemma 6

n

1/p
VLS, 2, < e { S 1Ga Ol Znss s —znvkl}

k=1
<cy |l P max [ f(2)],
zeD

where |I"| means the length of I". This completes the proof of the theorem.

2.
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